Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1010806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387852

RESUMO

Estrogens protect against weight gain and metabolic disruption in women and female rodents. Aberrations in the gut microbiota composition are linked to obesity and metabolic disorders. Furthermore, estrogen-mediated protection against diet-induced metabolic disruption is associated with modifications in gut microbiota. In this study, we tested if estradiol (E2)-mediated protection against obesity and metabolic disorders in female mice is dependent on gut microbiota. Specifically, we tested if fecal microbiota transplantation (FMT) from E2-treated lean female mice, supplemented with or without Akkermansia muciniphila, prevented high fat diet (HFD)-induced body weight gain, fat mass gain, and hyperglycemia in female recipients. FMT from, and cohousing with, E2-treated lean donors was not sufficient to transfer the metabolic benefits to the E2-deficient female recipients. Moreover, FMT from lean donors supplemented with A. muciniphila exacerbated HFD-induced hyperglycemia in E2-deficient recipients, suggesting its detrimental effect on the metabolic health of E2-deficient female rodents fed a HFD. Given that A. muciniphila attenuates HFD-induced metabolic insults in males, the present findings suggest a sex difference in the impact of this microbe on metabolic health.


Assuntos
Dieta Hiperlipídica , Hiperglicemia , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Akkermansia , Transplante de Microbiota Fecal , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/terapia , Obesidade/metabolismo , Aumento de Peso
2.
Metabolites ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436440

RESUMO

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.

3.
Trends Endocrinol Metab ; 32(8): 554-565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34049772

RESUMO

This review discusses the interactions of steroids with the gut and vaginal microbiomes within each life phase of adult women and the implications for women's health. Each phase of a woman's life is characterized by distinct hormonal states which drive overall physiology of both host and commensal microbes. These host-microbiome interactions underlie disease pathology in disorders that affect women across their lifetime, including bacterial vaginosis, gestational diabetes, polycystic ovary syndrome (PCOS), anxiety, depression, and obesity. Although many associations between host health and microbiome composition are well defined, the mechanistic role of the microbiome in women's health outcomes is largely unknown. This review addresses potential mechanisms by which the microbiota influences women's health and highlights gaps in current knowledge.


Assuntos
Microbioma Gastrointestinal , Microbiota , Esteroides , Vagina , Saúde da Mulher , Adulto , Feminino , Humanos , Vagina/microbiologia , Vaginose Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...